|
const std = @import("../std.zig"); const testing = std.testing; const math = std.math; |
abscomplex/abs.zig |
pub const abs = @import("complex/abs.zig").abs; |
acoshcomplex/acosh.zig |
pub const acosh = @import("complex/acosh.zig").acosh; |
acoscomplex/acos.zig |
pub const acos = @import("complex/acos.zig").acos; |
argcomplex/arg.zig |
pub const arg = @import("complex/arg.zig").arg; |
asinhcomplex/asinh.zig |
pub const asinh = @import("complex/asinh.zig").asinh; |
asincomplex/asin.zig |
pub const asin = @import("complex/asin.zig").asin; |
atanhcomplex/atanh.zig |
pub const atanh = @import("complex/atanh.zig").atanh; |
atancomplex/atan.zig |
pub const atan = @import("complex/atan.zig").atan; |
conjcomplex/conj.zig |
pub const conj = @import("complex/conj.zig").conj; |
coshcomplex/cosh.zig |
pub const cosh = @import("complex/cosh.zig").cosh; |
coscomplex/cos.zig |
pub const cos = @import("complex/cos.zig").cos; |
expcomplex/exp.zig |
pub const exp = @import("complex/exp.zig").exp; |
logcomplex/log.zig |
pub const log = @import("complex/log.zig").log; |
powcomplex/pow.zig |
pub const pow = @import("complex/pow.zig").pow; |
projcomplex/proj.zig |
pub const proj = @import("complex/proj.zig").proj; |
sinhcomplex/sinh.zig |
pub const sinh = @import("complex/sinh.zig").sinh; |
sincomplex/sin.zig |
pub const sin = @import("complex/sin.zig").sin; |
sqrtcomplex/sqrt.zig |
pub const sqrt = @import("complex/sqrt.zig").sqrt; |
tanhcomplex/tanh.zig |
pub const tanh = @import("complex/tanh.zig").tanh; |
tancomplex/tan.zig |
pub const tan = @import("complex/tan.zig").tan; |
Complex()A complex number consisting of a real an imaginary part. T must be a floating-point value. |
pub fn Complex(comptime T: type) type { return struct { const Self = @This(); re: T, im: T, |
init()Real part. Imaginary part. Create a new Complex number from the given real and imaginary parts. |
pub fn init(re: T, im: T) Self { return Self{ .re = re, .im = im, }; } |
add()Returns the sum of two complex numbers. |
pub fn add(self: Self, other: Self) Self { return Self{ .re = self.re + other.re, .im = self.im + other.im, }; } |
sub()Returns the subtraction of two complex numbers. |
pub fn sub(self: Self, other: Self) Self { return Self{ .re = self.re - other.re, .im = self.im - other.im, }; } |
mul()Returns the product of two complex numbers. |
pub fn mul(self: Self, other: Self) Self { return Self{ .re = self.re * other.re - self.im * other.im, .im = self.im * other.re + self.re * other.im, }; } |
div()Returns the quotient of two complex numbers. |
pub fn div(self: Self, other: Self) Self { const re_num = self.re * other.re + self.im * other.im; const im_num = self.im * other.re - self.re * other.im; const den = other.re * other.re + other.im * other.im; return Self{ .re = re_num / den, .im = im_num / den, }; } |
conjugate()Returns the complex conjugate of a number. |
pub fn conjugate(self: Self) Self { return Self{ .re = self.re, .im = -self.im, }; } |
neg()Returns the negation of a complex number. |
pub fn neg(self: Self) Self { return Self{ .re = -self.re, .im = -self.im, }; } |
mulbyi()Returns the product of complex number and i=sqrt(-1) |
pub fn mulbyi(self: Self) Self { return Self{ .re = -self.im, .im = self.re, }; } |
reciprocal()Returns the reciprocal of a complex number. |
pub fn reciprocal(self: Self) Self { const m = self.re * self.re + self.im * self.im; return Self{ .re = self.re / m, .im = -self.im / m, }; } |
magnitude()Returns the magnitude of a complex number. |
pub fn magnitude(self: Self) T { return @sqrt(self.re * self.re + self.im * self.im); } }; } const epsilon = 0.0001; |
Test:complex.add |
test "complex.add" { const a = Complex(f32).init(5, 3); const b = Complex(f32).init(2, 7); const c = a.add(b); try testing.expect(c.re == 7 and c.im == 10); } |
Test:complex.sub |
test "complex.sub" { const a = Complex(f32).init(5, 3); const b = Complex(f32).init(2, 7); const c = a.sub(b); try testing.expect(c.re == 3 and c.im == -4); } |
Test:complex.mul |
test "complex.mul" { const a = Complex(f32).init(5, 3); const b = Complex(f32).init(2, 7); const c = a.mul(b); try testing.expect(c.re == -11 and c.im == 41); } |
Test:complex.div |
test "complex.div" { const a = Complex(f32).init(5, 3); const b = Complex(f32).init(2, 7); const c = a.div(b); try testing.expect(math.approxEqAbs(f32, c.re, @as(f32, 31) / 53, epsilon) and math.approxEqAbs(f32, c.im, @as(f32, -29) / 53, epsilon)); } |
Test:complex.conjugate |
test "complex.conjugate" { const a = Complex(f32).init(5, 3); const c = a.conjugate(); try testing.expect(c.re == 5 and c.im == -3); } |
Test:complex.neg |
test "complex.neg" { const a = Complex(f32).init(5, 3); const c = a.neg(); try testing.expect(c.re == -5 and c.im == -3); } |
Test:complex.mulbyi |
test "complex.mulbyi" { const a = Complex(f32).init(5, 3); const c = a.mulbyi(); try testing.expect(c.re == -3 and c.im == 5); } |
Test:complex.reciprocal |
test "complex.reciprocal" { const a = Complex(f32).init(5, 3); const c = a.reciprocal(); try testing.expect(math.approxEqAbs(f32, c.re, @as(f32, 5) / 34, epsilon) and math.approxEqAbs(f32, c.im, @as(f32, -3) / 34, epsilon)); } |
Test:complex.magnitude |
test "complex.magnitude" { const a = Complex(f32).init(5, 3); const c = a.magnitude(); try testing.expect(math.approxEqAbs(f32, c, 5.83095, epsilon)); } test { _ = @import("complex/abs.zig"); _ = @import("complex/acosh.zig"); _ = @import("complex/acos.zig"); _ = @import("complex/arg.zig"); _ = @import("complex/asinh.zig"); _ = @import("complex/asin.zig"); _ = @import("complex/atanh.zig"); _ = @import("complex/atan.zig"); _ = @import("complex/conj.zig"); _ = @import("complex/cosh.zig"); _ = @import("complex/cos.zig"); _ = @import("complex/exp.zig"); _ = @import("complex/log.zig"); _ = @import("complex/pow.zig"); _ = @import("complex/proj.zig"); _ = @import("complex/sinh.zig"); _ = @import("complex/sin.zig"); _ = @import("complex/sqrt.zig"); _ = @import("complex/tanh.zig"); _ = @import("complex/tan.zig"); } |
Generated by zstd-browse2 on 2023-11-04 14:12:22 -0400. |