|
const std = @import("../std.zig"); const builtin = @import("builtin"); const assert = std.debug.assert; const expect = std.testing.expect; const expectEqual = std.testing.expectEqual; inline fn mantissaOne(comptime T: type) comptime_int { return if (@typeInfo(T).Float.bits == 80) 1 << floatFractionalBits(T) else 0; } inline fn reconstructFloat(comptime T: type, comptime exponent: comptime_int, comptime mantissa: comptime_int) T { const TBits = @Type(.{ .Int = .{ .signedness = .unsigned, .bits = @bitSizeOf(T) } }); const biased_exponent = @as(TBits, exponent + floatExponentMax(T)); return @as(T, @bitCast((biased_exponent << floatMantissaBits(T)) | @as(TBits, mantissa))); } |
floatExponentBits()Creates a raw "1.0" mantissa for floating point type T. Used to dedupe f80 logic. Creates floating point type T from an unbiased exponent and raw mantissa. Returns the number of bits in the exponent of floating point type T. |
pub inline fn floatExponentBits(comptime T: type) comptime_int { comptime assert(@typeInfo(T) == .Float); return switch (@typeInfo(T).Float.bits) { 16 => 5, 32 => 8, 64 => 11, 80 => 15, 128 => 15, else => @compileError("unknown floating point type " ++ @typeName(T)), }; } |
floatMantissaBits()Returns the number of bits in the mantissa of floating point type T. |
pub inline fn floatMantissaBits(comptime T: type) comptime_int { comptime assert(@typeInfo(T) == .Float); return switch (@typeInfo(T).Float.bits) { 16 => 10, 32 => 23, 64 => 52, 80 => 64, 128 => 112, else => @compileError("unknown floating point type " ++ @typeName(T)), }; } |
floatFractionalBits()Returns the number of fractional bits in the mantissa of floating point type T. |
pub inline fn floatFractionalBits(comptime T: type) comptime_int { comptime assert(@typeInfo(T) == .Float); // standard IEEE floats have an implicit 0.m or 1.m integer part // f80 is special and has an explicitly stored bit in the MSB // this function corresponds to `MANT_DIG - 1' from C return switch (@typeInfo(T).Float.bits) { 16 => 10, 32 => 23, 64 => 52, 80 => 63, 128 => 112, else => @compileError("unknown floating point type " ++ @typeName(T)), }; } |
floatExponentMin()Returns the minimum exponent that can represent a normalised value in floating point type T. |
pub inline fn floatExponentMin(comptime T: type) comptime_int { return -floatExponentMax(T) + 1; } |
floatExponentMax()Returns the maximum exponent that can represent a normalised value in floating point type T. |
pub inline fn floatExponentMax(comptime T: type) comptime_int { return (1 << (floatExponentBits(T) - 1)) - 1; } |
floatTrueMin()Returns the smallest subnormal number representable in floating point type T. |
pub inline fn floatTrueMin(comptime T: type) T { return reconstructFloat(T, floatExponentMin(T) - 1, 1); } |
floatMin()Returns the smallest normal number representable in floating point type T. |
pub inline fn floatMin(comptime T: type) T { return reconstructFloat(T, floatExponentMin(T), mantissaOne(T)); } |
floatMax()Returns the largest normal number representable in floating point type T. |
pub inline fn floatMax(comptime T: type) T { const all1s_mantissa = (1 << floatMantissaBits(T)) - 1; return reconstructFloat(T, floatExponentMax(T), all1s_mantissa); } |
floatEps()Returns the machine epsilon of floating point type T. |
pub inline fn floatEps(comptime T: type) T { return reconstructFloat(T, -floatFractionalBits(T), mantissaOne(T)); } |
inf()Returns the value inf for floating point type T. |
pub inline fn inf(comptime T: type) T { return reconstructFloat(T, floatExponentMax(T) + 1, mantissaOne(T)); } |
nan()Returns the canonical quiet NaN representation for floating point type T. |
pub inline fn nan(comptime T: type) T { return reconstructFloat( T, floatExponentMax(T) + 1, mantissaOne(T) | 1 << (floatFractionalBits(T) - 1), ); } |
snan() Returns a signalling NaN representation for floating point type T. |
pub inline fn snan(comptime T: type) T { return reconstructFloat( T, floatExponentMax(T) + 1, mantissaOne(T) | 1 << (floatFractionalBits(T) - 2), ); } |
Test:float bits |
test "float bits" { inline for ([_]type{ f16, f32, f64, f80, f128, c_longdouble }) |T| { // (1 +) for the sign bit, since it is separate from the other bits const size = 1 + floatExponentBits(T) + floatMantissaBits(T); try expect(@bitSizeOf(T) == size); // for machine epsilon, assert expmin <= -prec <= expmax try expect(floatExponentMin(T) <= -floatFractionalBits(T)); try expect(-floatFractionalBits(T) <= floatExponentMax(T)); } } |
Test:math.inf |
test "math.inf" { const inf_u16: u16 = 0x7C00; const inf_u32: u32 = 0x7F800000; const inf_u64: u64 = 0x7FF0000000000000; const inf_u80: u80 = 0x7FFF8000000000000000; const inf_u128: u128 = 0x7FFF0000000000000000000000000000; try expectEqual(inf_u16, @bitCast(inf(f16))); try expectEqual(inf_u32, @bitCast(inf(f32))); try expectEqual(inf_u64, @bitCast(inf(f64))); try expectEqual(inf_u80, @bitCast(inf(f80))); try expectEqual(inf_u128, @bitCast(inf(f128))); } |
Test:math.nan |
test "math.nan" { const qnan_u16: u16 = 0x7E00; const qnan_u32: u32 = 0x7FC00000; const qnan_u64: u64 = 0x7FF8000000000000; const qnan_u80: u80 = 0x7FFFC000000000000000; const qnan_u128: u128 = 0x7FFF8000000000000000000000000000; try expectEqual(qnan_u16, @bitCast(nan(f16))); try expectEqual(qnan_u32, @bitCast(nan(f32))); try expectEqual(qnan_u64, @bitCast(nan(f64))); try expectEqual(qnan_u80, @bitCast(nan(f80))); try expectEqual(qnan_u128, @bitCast(nan(f128))); } |
Test:math.snan |
test "math.snan" { // TODO: https://github.com/ziglang/zig/issues/14366 if (builtin.zig_backend == .stage2_llvm and comptime builtin.cpu.arch.isArmOrThumb()) return error.SkipZigTest; const snan_u16: u16 = 0x7D00; const snan_u32: u32 = 0x7FA00000; const snan_u64: u64 = 0x7FF4000000000000; const snan_u80: u80 = 0x7FFFA000000000000000; const snan_u128: u128 = 0x7FFF4000000000000000000000000000; try expectEqual(snan_u16, @bitCast(snan(f16))); try expectEqual(snan_u32, @bitCast(snan(f32))); try expectEqual(snan_u64, @bitCast(snan(f64))); try expectEqual(snan_u80, @bitCast(snan(f80))); try expectEqual(snan_u128, @bitCast(snan(f128))); } |
Generated by zstd-browse2 on 2023-11-04 14:12:23 -0400. |