|
const std = @import("../../../std.zig");
const mem = std.mem;
const uefi = std.os.uefi;
const Allocator = mem.Allocator;
const Guid = uefi.Guid;
const assert = std.debug.assert;
// All Device Path Nodes are byte-packed and may appear on any byte boundary.
// All code references to device path nodes must assume all fields are unaligned.
|
DevicePath |
pub const DevicePath = extern struct {
type: uefi.DevicePath.Type,
subtype: u8,
length: u16 align(1),
pub const guid align(8) = Guid{
.time_low = 0x09576e91,
.time_mid = 0x6d3f,
.time_high_and_version = 0x11d2,
.clock_seq_high_and_reserved = 0x8e,
.clock_seq_low = 0x39,
.node = [_]u8{ 0x00, 0xa0, 0xc9, 0x69, 0x72, 0x3b },
};
|
next()Returns the next DevicePath node in the sequence, if any. |
pub fn next(self: *DevicePath) ?*DevicePath {
if (self.type == .End and @as(uefi.DevicePath.End.Subtype, @enumFromInt(self.subtype)) == .EndEntire)
return null;
return @as(*DevicePath, @ptrCast(@as([*]u8, @ptrCast(self)) + self.length));
}
|
size()Calculates the total length of the device path structure in bytes, including the end of device path node. |
pub fn size(self: *DevicePath) usize {
var node = self;
while (node.next()) |next_node| {
node = next_node;
}
return (@intFromPtr(node) + node.length) - @intFromPtr(self);
}
|
create_file_device_path()Creates a file device path from the existing device path and a file path. |
pub fn create_file_device_path(self: *DevicePath, allocator: Allocator, path: [:0]align(1) const u16) !*DevicePath {
var path_size = self.size();
// 2 * (path.len + 1) for the path and its null terminator, which are u16s
// DevicePath for the extra node before the end
var buf = try allocator.alloc(u8, path_size + 2 * (path.len + 1) + @sizeOf(DevicePath));
@memcpy(buf[0..path_size], @as([*]const u8, @ptrCast(self))[0..path_size]);
// Pointer to the copy of the end node of the current chain, which is - 4 from the buffer
// as the end node itself is 4 bytes (type: u8 + subtype: u8 + length: u16).
var new = @as(*uefi.DevicePath.Media.FilePathDevicePath, @ptrCast(buf.ptr + path_size - 4));
new.type = .Media;
new.subtype = .FilePath;
new.length = @sizeOf(uefi.DevicePath.Media.FilePathDevicePath) + 2 * (@as(u16, @intCast(path.len)) + 1);
// The same as new.getPath(), but not const as we're filling it in.
var ptr = @as([*:0]align(1) u16, @ptrCast(@as([*]u8, @ptrCast(new)) + @sizeOf(uefi.DevicePath.Media.FilePathDevicePath)));
for (path, 0..) |s, i|
ptr[i] = s;
ptr[path.len] = 0;
var end = @as(*uefi.DevicePath.End.EndEntireDevicePath, @ptrCast(@as(*DevicePath, @ptrCast(new)).next().?));
end.type = .End;
end.subtype = .EndEntire;
end.length = @sizeOf(uefi.DevicePath.End.EndEntireDevicePath);
return @as(*DevicePath, @ptrCast(buf.ptr));
}
|
getDevicePath() |
pub fn getDevicePath(self: *const DevicePath) ?uefi.DevicePath {
inline for (@typeInfo(uefi.DevicePath).Union.fields) |ufield| {
const enum_value = std.meta.stringToEnum(uefi.DevicePath.Type, ufield.name);
// Got the associated union type for self.type, now
// we need to initialize it and its subtype
if (self.type == enum_value) {
var subtype = self.initSubtype(ufield.type);
if (subtype) |sb| {
// e.g. return .{ .Hardware = .{ .Pci = @ptrCast(...) } }
return @unionInit(uefi.DevicePath, ufield.name, sb);
}
}
}
return null;
}
|
initSubtype() |
pub fn initSubtype(self: *const DevicePath, comptime TUnion: type) ?TUnion {
const type_info = @typeInfo(TUnion).Union;
const TTag = type_info.tag_type.?;
inline for (type_info.fields) |subtype| {
// The tag names match the union names, so just grab that off the enum
const tag_val: u8 = @intFromEnum(@field(TTag, subtype.name));
if (self.subtype == tag_val) {
// e.g. expr = .{ .Pci = @ptrCast(...) }
return @unionInit(TUnion, subtype.name, @as(subtype.type, @ptrCast(self)));
}
}
return null;
}
};
comptime {
assert(4 == @sizeOf(DevicePath));
assert(1 == @alignOf(DevicePath));
assert(0 == @offsetOf(DevicePath, "type"));
assert(1 == @offsetOf(DevicePath, "subtype"));
assert(2 == @offsetOf(DevicePath, "length"));
}
|
| Generated by zstd-browse2 on 2023-11-04 14:12:38 -0400. |